On geometrically finite branched covering∗ III. A direct proof of CJS’s theorem†

نویسندگان

  • Yunping Jiang
  • Gaofei Zhang
چکیده

We studied the rational realization problem for sub-hyperbolic semi-rational branched coverings. By using the shielding ring lemma, we are able to give a direct proof of CJS’s Theorem following the lines of the proof of Thurston’s Theorem given in the paper of Douady-Hubbard.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Thurston Type Theorem for Branched Coverings of Two-Sphere

I give a survey about a program which intends to find topological characterizations of a rational map and then use them to study the rigidity problem for rational maps. Thurston started this program by considering critically finite branched coverings and gave a necessary and sufficient combinatorial condition for a critically finite rational maps among all critically finite branched coverings. ...

متن کامل

Geometrization of Sub-hyperbolic Semi-rational Branched Coverings

Given a sub-hyperbolic semi-rational branched covering which is not CLH-equivalent a rational map, it must have the non-empty canonical Thurston obstruction. By using this canonical Thurston obstruction, we decompose this dynamical system in this paper into several sub-dynamical systems. Each of these subdynamical systems is either a post-critically finite type branched covering or a sub-hyperb...

متن کامل

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

The Basic Theorem and its Consequences

Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...

متن کامل

On the norm of the derived‎ subgroups of all subgroups of a finite group

In this paper‎, ‎we give a complete proof of Theorem 4.1(ii) and a new‎ ‎elementary proof of Theorem 4.1(i) in [Li and Shen‎, ‎On the‎ ‎intersection of the normalizers of the derived subgroups of all‎ ‎subgroups of a finite group‎, ‎ J‎. ‎Algebra, ‎323  (2010) 1349--1357]‎. ‎In addition‎, ‎we also give a generalization of Baer's Theorem‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003